Safer Sports Helmets with High-speed Recording Camera

To design safer helmets a study was made comparing vinyl nitrile foams to other helmet liner materials. A high-speed camera from Mikrotron was used for the shear tests to acquire video for analysis.
Image: ©vectorfusionart/stock.adobe.com

Vinyl nitrile (VN) is a closed-cell foam derived from synthetic rubber. It is soft, flexible and offers good impact attenuation. It is also resilient meaning that it crushes on impact and reduces energy transfer to the head, before regaining its shape and protective qualities. For that reason, vinyl nitrile is used in sports helmets. Researchers at the École de Technologie Supérieure and the Hôpital du Sacré-Cœur in Montreal, Canada, conducted a study addressing the strain rate dependent behavior of three different densities of VN foams. The aim of the study was to create data to compare VN foams to other helmet liner materials. The three Vinyl nitrile samples had densities of 97.5, 125, and 183kg/m3. Samples measured 20mm in height to correspond to the typical foam thickness in a hockey helmet. During testing each sample was submitted to quasi-static compression and impacts in compression, as well as a combination of compression and shear with a loading direction of 45°. Shear tests were performed with an electromechanical universal machine. For impacts, a drop test rig and a method was developed to account for strain rate variation during impactor deceleration. In both setups, the impactors were dropped from multiple heights starting at 200mm, up to 2.6m in increments of 200mm. The resulting impact speed ranged from 2 to 7m/s, corresponding to typical impact speeds applied to a helmet during a football game, a hockey game or a ski accident. A MotionBlitz Eosens mini high-speed camera from Mikrotron was used to acquire video for analysis at a sampling rate of 10kHz. The displacement of the impactor was measured in the video by automatically tracking markers placed on the impactor with digital image correlation using GOM Correlate software. The synchronization of the load cell measurement and the video was performed by matching the time of the first load measurement with the time of the first video footage showing a contact between the impactor and the foam. The camera was also used to ensure that there was no slippage between the foam and both the laying surface and the impacting surface. In the lab, lighting was the crucial point in capturing the recordings accurately. The camera resolved the lighting issue with its high sensitivity that enables recordings under normal lighting conditions at up to 506fps at 1280×1024 pixel resolution. By analyzing the video, researchers were able to predict the stress vs. strain curve of the three VN foams at any constant rate within the tested range.

www.mikrotron.de

Das könnte Sie auch Interessieren

Bild: Basler AG
Bild: Basler AG
Details bei 80m/min

Details bei 80m/min

Bei der Herstellung von Batteriezellen ist eine hohe Qualität in allen Prozessschritten entscheidend, um den Materialausschuss zu reduzieren. Digitale Bildverarbeitungslösungen von Basler eröffnen Möglichkeiten, auch kleinste Defekte bei der Elektrodenbeschichtung zuverlässig zu erkennen.

Bild: Vision Components
Bild: Vision Components
Eingebettet

Eingebettet

Eingebettete Bildverarbeitungssysteme sind hochintegrierte Single Board Computer, die zusammen mit Kameratechnik ein Vision System ergeben, das nicht der klassischen komponentenbasierten PC-Technik und -struktur entspricht. Derartig spezialisierte Embedded Vision Systeme sind kompakter, kostengünstiger, energiesparender, oft auch leistungsfähiger und auf ihre Arbeitsumgebung angepasst.

Bild: Mercedes-Benz Group AG
Bild: Mercedes-Benz Group AG
Kurzzeit-Röntgen

Kurzzeit-Röntgen

Zusammen mit dem Fraunhofer EMI hat Mercedes-Benz den weltweit ersten Röntgencrash mit einem realen Pkw durchgeführt. Mit der Kurzzeit-Röntgentechnologie lassen sich hochdynamische innere Deformationsvorgänge mit bis zu 1.000fps darstellen, was die Technologiedemonstration in der EMI-Forschungscrashanlage bei Freiburg gezeigt hat. Bisher unsichtbare Verformungen und ihre exakten Abläufe werden so transparent.

Bild: ©Ryan/stock.adobe.com
Bild: ©Ryan/stock.adobe.com
Potenziale des Quantencomputings für die Bildverarbeitung

Potenziale des Quantencomputings für die Bildverarbeitung

Das Versprechen des Quantencomputings, komplexe Probleme mit bisher unerreichter Geschwindigkeit zu lösen, eröffnet neue Horizonte in zahlreichen Bereichen. Auch in der Bildverarbeitung könnten die Prinzipien der Quantenmechanik und deren Anwendung in Quantenalgorithmen zu signifikanten Fortschritten führen. Doch während die theoretischen Grundlagen vielversprechend sind, steht die praktische Umsetzung noch vor einigen Herausforderungen.