Vom Vision Entwickler zum Deep Learning Einsteiger – Teil 2/2

AI for Beginners

Vom Vision Entwickler zum Deep Learning Einsteiger – Teil 2/2

Für Deep Learning gibt es eine große Auswahl an Frameworks, Netzwerken und Tools. Der folgende Beitrag bietet einige Einstiegstipps. Im zweiten Teil der Serie geht es um Voraussetzungen und Konsistenz.

Bild 1 | Während Bilder, deren Größe mit verschiedenen Methoden geändert wurde (links Kantenglättung mit Antialiasing, rechts ohne), auf den ersten Blick gleich aussehen, reichen die in weiß hervorgehoben Unterschiede aus, um einen signifikanten Einfluss auf die Genauigkeit der Deep Learning Inferenzergebnisse zu haben. (Bild: Flir Systems GmbH)

BWährend Bilder, deren Größe mit verschiedenen Methoden geändert wurde (links Kantenglättung mit Antialiasing, rechts ohne), auf den ersten Blick gleich aussehen, reichen die in weiß hervorgehoben Unterschiede aus, um einen signifikanten Einfluss auf die Genauigkeit der Deep Learning Inferenzergebnisse zu haben. (Bild: Flir Systems GmbH)

Die Trainingsbilder müssen den später vorliegenden Bildern so ähnlich sehen, wie es nur irgendwie möglich ist. Wenn bei Projekten nur sehr wenige Daten für das Training verfügbar sind, können bereits minimale Unterschiede bei der Positionierung und Beleuchtung der Gegenstände eine gewaltige Auswirkung auf die Anwendungsleistung haben. Durch konsistente Positionierung und Beleuchtung des Ziels nimmt die Varianz zwischen den Bildern ab, wodurch weniger Trainingsdaten erforderlich sind. So ist 3D-Druck wie dafür geschaffen, in kurzer Zeit individuelle Befestigungen zu drucken und damit Muster zuverlässig zu fixieren. Die Beleuchtung sollte dabei die Unterschiede der verschiedenen Objekte hervorheben. Sie sollten unbedingt vermeiden, dass einzelne Bereiche zu hell oder zu schwach beleuchtet sind, dass so Feinheiten nicht mehr erkennbar sind. Viele Bildverarbeitungsprobleme mit Farbe sollten nicht mit einer Farbkamera, sondern einer monochromen Kamera und der richtigen Kombination aus Beleuchtung und Filtern gelöst werden. Eine hochwertige Kamera mit hoher Auflösung und einem großen Dynamikbereich erfasst detaillierte Trainingsdaten und bewährt sich schnell im Einsatz. Bei der Bildverarbeitung ist die Konsistenz zwischen den Trainingsdaten und den in der Praxis aufgenommenen Daten von entscheidender Bedeutung. So kann eine Kantenglättung bei der Anpassung der Bildgröße eine entscheidende Auswirkung auf die Netzwerkleistung haben. Zwei mit unterschiedlichen Methoden skalierte Bilder, die für das menschliche Auge identisch aussehen, können dennoch Unterschiede aufweisen, die zu Vorhersagen mit einer geringeren Wahrscheinlichkeit oder falschen Klassifizierungen führen. Um Vision-Entwicklern den Zugang und die Abläufe zu Deep Learning immer weiter zu erleichtern, erscheint in Kürze die neue Inferenzkamera-Serie von Flir. Neuronale Netzwerke können direkt auf diese Kameras geladen werden, wodurch der PC oder Einplatinencomputer wegfällt und die Inferenz direkt auf der Kamera stattfindet.

Überprüfung fehlerhafter Netzwerke

So wie zur Entwicklung von Machine-Vision-Systemen auf Deep-Learning-Basis neue Methoden und Strategien erforderlich sind, ist auch für die Fehlerbehebung ein neuer Ansatz notwendig. Bei der Überprüfung eines fehlerhaften Netzwerks ist es daher sinnvoll, zuerst nach Mustern bei den fehlerhaften Ergebnissen zu suchen. Unerwartete Ergebnisse und eine schlechte Leistung von neuronalen Netzwerken gehen häufig auf schlechte Trainingsdaten zurück. Die Zuverlässigkeit der Netzwerke kann oftmals mit einer Erweiterung der Trainingsdaten angehoben werden und mit einem systematischen Ansatz kann das erforderliche Ausmaß der Daten festgestellt werden. Häufig resultieren unerwartete Ergebnisse aus Grauzonen-Fällen, die bei den Trainingsdaten unterrepräsentiert oder falsch bezeichnet sind. Zwar kann die Zuverlässigkeit eines Netzwerks zusammen mit der Datenmenge erhöht werden, wird aber immer an einem bestimmten Punkt stagnieren. Wirklich erfolgreich ist eine Lösung, wenn diese die Zuverlässigkeitsgrenze erreicht.

Themen:

| Fachartikel

Ausgabe:

inVISION 5 2019
FLIR Systems GmbH

Das könnte Sie auch Interessieren

Bild: Basler AG
Bild: Basler AG
Details bei 80m/min

Details bei 80m/min

Bei der Herstellung von Batteriezellen ist eine hohe Qualität in allen Prozessschritten entscheidend, um den Materialausschuss zu reduzieren. Digitale Bildverarbeitungslösungen von Basler eröffnen Möglichkeiten, auch kleinste Defekte bei der Elektrodenbeschichtung zuverlässig zu erkennen.

Bild: Vision Components
Bild: Vision Components
Eingebettet

Eingebettet

Eingebettete Bildverarbeitungssysteme sind hochintegrierte Single Board Computer, die zusammen mit Kameratechnik ein Vision System ergeben, das nicht der klassischen komponentenbasierten PC-Technik und -struktur entspricht. Derartig spezialisierte Embedded Vision Systeme sind kompakter, kostengünstiger, energiesparender, oft auch leistungsfähiger und auf ihre Arbeitsumgebung angepasst.

Bild: Mercedes-Benz Group AG
Bild: Mercedes-Benz Group AG
Kurzzeit-Röntgen

Kurzzeit-Röntgen

Zusammen mit dem Fraunhofer EMI hat Mercedes-Benz den weltweit ersten Röntgencrash mit einem realen Pkw durchgeführt. Mit der Kurzzeit-Röntgentechnologie lassen sich hochdynamische innere Deformationsvorgänge mit bis zu 1.000fps darstellen, was die Technologiedemonstration in der EMI-Forschungscrashanlage bei Freiburg gezeigt hat. Bisher unsichtbare Verformungen und ihre exakten Abläufe werden so transparent.

Bild: ©Ryan/stock.adobe.com
Bild: ©Ryan/stock.adobe.com
Potenziale des Quantencomputings für die Bildverarbeitung

Potenziale des Quantencomputings für die Bildverarbeitung

Das Versprechen des Quantencomputings, komplexe Probleme mit bisher unerreichter Geschwindigkeit zu lösen, eröffnet neue Horizonte in zahlreichen Bereichen. Auch in der Bildverarbeitung könnten die Prinzipien der Quantenmechanik und deren Anwendung in Quantenalgorithmen zu signifikanten Fortschritten führen. Doch während die theoretischen Grundlagen vielversprechend sind, steht die praktische Umsetzung noch vor einigen Herausforderungen.