VPU, GPU und FPGA im Vergleich für Deep-Learning-Inferenz

Inferenz Vergleich

VPU, GPU und FPGA im Vergleich für Deep-Learning-Inferenz

GPUs, FPGAs und Vision-Prozessoren (VPUs) verfügen über Vor- und Nachteile, die ein Systemkonzept beim Einstieg in eine Deep-Learning-Inferenz beeinflussen.

Bild 1 | Stromverbrauch vs. Einzelbild-Inferenzzeit im Vergleich einer GPU, SoC und VPU.
Bild unterer Teil: Relative Leistung einer GPU, FPGA und VPU zur Beschleunigung von Inferenz im Vergleich. (Bild: Flir Integrated Imaging Solutions Inc.)

GPU

GPUs sind aufgrund ihrer hochparalellisierten Verarbeitungsarchitektur optimal für die Beschleunigung von Deep Learning Inferenz geeignet. Nvidia hat in die Entwicklung von Tools für Deep Learning und Inferenz investiert, die auf Nvidias Cuda-Kernen (Compute Unified Device Architecture) ausgeführt werden können. Die GPU-Unterstützung von Google TensorFlow ist für Cuda-fähige GPUs von Nvidia bestimmt. Einige GPUs sind mit Tausenden von Prozessorkernen ausgestattet und eignen sich optimal für rechnerisch anspruchsvolle Aufgaben wie autonome Fahrzeuge oder Trainingsnetzwerke, die dem Einsatz mit weniger leistungsfähiger Hardware dienen. In der Regel verbrauchen GPUs viel Strom. Der RTX 2080 erfordert 225W, während der Jetson TX2 bis zu 15W verbraucht. GPUs sind zudem teuer, so kostet z.B. der RTX 2080 ca. 800USD.

FPGA

FPGAs sind in der industriellen Bildverarbeitung weit verbreitet. Sie vereinen die Flexibilität und Programmierbarkeit von Software, die auf einer CPU ausgeführt wird, mit der Geschwindigkeit und Energieeffizienz eines ASICs. Eine Intel Aria 10 FPGA-basierte PCIe Vision Accelerator-Karte verbraucht bis zu 60W Energie und ist für 1.500USD erhältlich. Ein Nachteil von FPGAs besteht darin, dass die FPGA-Programmierung spezielles Wissen und Erfahrung erfordert. Die Entwicklung neuronaler Netzwerke für FPGAs ist aufwändig. Zwar können Entwickler auf Tools von Drittanbietern zurückgreifen, um Aufgaben zu vereinfachen, doch die Tools sind meist teuer und können Anwender an geschlossene Ökosysteme proprietärer Technologien binden.

Seiten: 1 2Auf einer Seite lesen

Thematik: Allgemein
www.flir.com

Das könnte Sie auch Interessieren

Anzeige

Vorfreude auf Control 2022

Vorfreude auf Control 2022

Vom 03. bis 06. Mai 2022 wird die 34. Control – Internationale Fachmesse für Qualitätssicherung – in Stuttgart stattfinden.

EMVA Webinar mit Continental Teves

EMVA Webinar mit Continental Teves

Das nächste EMVA Spotlight Webinar findet am Donnerstag, den 9. Dezember, ab 16:00 Uhr (CET) statt. Nuria Garrido López (Continental Teves AG) wird über ‚Änderungen und Lösungen für die optische End-of-Line-Inspektion in der Automobilindustrie‘ sprechen.

EMVA Young Professional Award 2022

EMVA Young Professional Award 2022

Der EMVA Young Professional Award wird auf der 20. EMVA Business Conference 2022 vergeben, die vom 12. bis 14. Mai in Brüssel, Belgien, stattfindet.

Video: EMVA Vision Pitches – Robot Vision

Video: EMVA Vision Pitches – Robot Vision

Teil der inVISION Days 2021 Konferenz waren die EMVA Vision Pitches, bei der sich interessante Unternehmen aus der Bildverarbeitung mit einem kurzen zehn-Minuten-Pitch vorgestellt haben.

Neues Beiratsmitglied für TriEye

Neues Beiratsmitglied für TriEye

Das israelische Startup-Unternehmen TriEye hat Hans Rijns (Bild), eine Führungskraft aus der Halbleiterbranche mit über 25 Jahren internationaler Erfahrung in den Bereichen F&E-Management, Innovation und Geschäftsstrategie, in seinen Beirat aufgenommen.

Vision-Branche auf starkem Kurs

Vision-Branche auf starkem Kurs

Mehr als 1,5 Jahre nach dem Ausbruch der Corona-Pandemie befindet sich der Industrial Technology Index nach einer Stabilisierung auf einem anhaltend hohen Niveau.

Lattice übernimmt Miramterix

Lattice übernimmt Miramterix

Lattice Semiconductor hat Mirametrix, Inc. übernommen, ein Softwareunternehmen, das sich auf fortschrittliche KI-Lösungen für Computer-Vision-Anwendungen spezialisiert hat.

Bild: Alteia
Bild: Alteia
15 Millionen Euro Finanzierung für Alteia

15 Millionen Euro Finanzierung für Alteia

Die Europäische Investitionsbank (EIB) und das in Toulouse ansässige Startup Alteia, das sich auf die Entwicklung von Software für künstliche Intelligenz spezialisiert hat, haben die Unterzeichnung einer Finanzierungsvereinbarung über 15Mio.€ bekannt gegeben.

Micro-Epsilon erweitert Vertriebsteam

Micro-Epsilon erweitert Vertriebsteam

Micro-Epsilon hat sein Vertriebsteam verstärkt. Seit Oktober unterstützen Marcus Gluth (Bild) in den Bereichen Weg- und Abstandssensoren, berührungslose IR-Temperatursensoren sowie Farbsensoren und Jens Höppner im Bereich 3D-Sensoren und Laser-Scanner den Außendienst des Unternehmens.

Anzeige

Anzeige

Anzeige

Anzeige

Anzeige

Anzeige