Ultra-Fast Focus Stack Capturing

Ultra-Fast Focus Stack Capturing

3D Reconstruction by Ultra-Fast Frame-by-Frame Focusing

The TAG Zip device is the world’s fastest true volumetric imaging system. Powered by the world’s fastest focusing lens, the new system has the ability to change the focal plane for each frame of the camera sensor independently from the focal location of the previous frame. In fact, the rate limiting step is entirely dependent on the camera and data transfer rate.

Picture 1: Thanks to its speed, the TAG Zip can max-out the frame rate of any camera while having each frame be located at any focal plane. Above, the TAG Zip was used to image a robotic gripper, a beer bottle and a picture placed in the background. The TAG Zip system can then provide an EDOF image of the scene or an edge detection depth map to help position the robotic gripper as it approaches the object to pickup. (Bild: TAG Optics Inc.)

Systems based on technologies such as time-of-flight, Lidar, and structured-light are increasing in prevalence and can provide a tremendous amount of 3D-shape information about the volume. However, this level of detail comes with drawbacks delivering too much precision in areas where there are no objects and in many cases not enough precision on specific areas of interest. Moreover the limited speed of these technologies also presents challenges to a robotic assisted system Reconstructing 3D-volumes using an image stack, often called Shape From Focus (SFF) or Depth From Focus/Defocus (DFF), is another technique that has been widely used in biology and static systems for gaining multi-dimensional information. The major advantage of this technique is its high spatial accuracy and other information gained about the objects in the image volume such as geometry, 3D-map-rendering, decoding of text, QR/bar codes, true color and gradients, etc. However, this technique has been little used in dynamic environments due to the time required to focus and capture the volume.

Breaking the speed barrier

By pairing the TAG Zip system with state of the art industrial high-speed machine vision cameras, the system can achieve speeds of 300 to 500fps; with each frame natively containing full color images encoded with x, y, and z data. The system’s speed even allows for inspection of multiple arbitrary user-defined regions of interest within the 3D-space providing real-time positioning, object recognition, and measurement information. In fact, the TAG-technology has a staggering theoretical speed limitation of three million FPS. Moreover, the focusing technology underlying the TAG Lens is operated on a closed loop system ensuring reliability, repeatability, and traceability; key elements for mission critical applications such as robotic guidance and go/no-go part inspection. The versatility enabled by ultra-fast frame-by-frame focusing not only unlocks the possibility to run multiple processing algorithms such as DFF and object recognition on live volumetric image stacks, but also allows new smart image capture processes. Specifically, after performing a first rough, but uniform coverage of a specified volume, the data contained can quickly be interpreted and used for further on-the-fly targeting. Higher density image collections can quickly be performed at targeted locations for detail extraction – all while continuously running the rough scan to ensure progressive and continuous monitoring of any changes in the 3D-field-of-view. A further advantage is the progressive resolution capability of the system. When a robotic arm needs to select a particular component, it must first locate the part in 3D. However the accuracy reqirements change throughout the process: as the arm approaches its target, the precision level must increase and eventually reach mm and even sub-mm resolution. The TAG Zip system can extract highly precise 3D information about objects near the imaging lens versus objects located meters away due to the native behavior of the depth-of-field by being closer to the imaging lens. This can be done while still analyzing the full 3D environment to detect moving or stationary objects and prevent possible obstruction or accidents.

Resume

Picture 2: Following a preliminary rough pass through the scene, the TAG Zip can then hone-in on any detected objects to perform higher density image collections and generate further 3D-information. On the fly processing can then be used to extract additional metadata about the particular focal locations where objects are detected such as edge detections and 3D-axia-locations. (Bild: TAG Optics Inc.)

Smart factories must be able to adapt to ever changing complex and demanding environments due to moving parts and multiple processes involved in manufacturing and assembly. As computational technology evolves, sensing systems will become significant limitations for the ever changing smart factory production lines. The advantages of a continuous 3D-volumetric systems based on high-speed capturing of images at different focal locations will result in the generation of critical information about parts of interest and their surroundings. Moreover, thanks to the high FPS bandwidth associated with the TAG Zip’s underlying technology, new development in both chip and sensor can be seamlessly incorporated and will insure that the TAG Zip 3D-volumetric-imaging-system will continue to be at the cutting edge of speed and reliability.

Themen:

| Fachartikel

Ausgabe:

inVISION 2 2017
TAG Optics Inc.

Das könnte Sie auch Interessieren

Bild: LMI Technologies GmbH
Bild: LMI Technologies GmbH
Smart 3D Coaxial Line Confocal Sensors

Smart 3D Coaxial Line Confocal Sensors

LMI Technologies new Gocator 4000 series introduces coaxial line confocal sensor technology to provide high-speed, high-resolution, and versatile 3D inline inspection performance with angular range (Max. slope angle up to +/-85°). The sensors have 1,920 points/profile for shadow-free 3D measurement and inspection, resolutions up to 1.9µm, a FoV up to 5.0mm and speeds up to 16kHz.

Bild: TeDo Verlag GmbH
Bild: TeDo Verlag GmbH
Qualitativ gut

Qualitativ gut

Viel war im Vorfeld der Messe darüber gerätselt worden, wie die Control dieses Jahr ohne zahlreiche große Aussteller laufen würde. Mit 475 Aussteller in zwei Hallen – davon 38% aus dem Ausland – und 13.149 Fachbesuchern überraschend gut. Anbei einige der Messe-Highlight im Überblick.

Bild: TeDo Verlag GmbH
Bild: TeDo Verlag GmbH
Robot Vision Webinar

Robot Vision Webinar

Am Dienstag den 28. Mai findet ab 14 Uhr das inVISION TechTalks Webinar ‚Robot Vision‘ statt. Dort stellen IDS (Machine Vision for Robotics – Technologies & Applications) und Roboception (Intelligent 3D robot vision plattform for end-users and distributors).

Bild: EMVA
Bild: EMVA
EMVA 1288 Standard Online Training

EMVA 1288 Standard Online Training

Am 18. Juni sowie am 3. Dezember findet ein dreitägiger Online-Kurs zur Norm 1288 der European Machine Vision Association (EMVA) statt. Ziel des Trainingskurses ist u.a. die vertiefte Kenntnis über die Grundlagen der neuen Version 4.0 sowie das Sammeln von praktischen Erfahrungen.

Bild: Mahr GmbH
Bild: Mahr GmbH
Mahr Innovation Days 2024

Mahr Innovation Days 2024

Am 12. bis 13. Juni findet in Göttingen bei Mahr die Innovation Days 2024 statt. Dabei stellt die Firma zahlreiche Neuheiten zur Oberflächenmessung und Messtechnik vor und gibt an beiden Tagen in zahlreichen Vorträgen einen Überblick über aktuelle Trends und Produkte.