Unlocking the value in video

Unlocking the value in video

Jeff Bier’s Embedded Column: Deep neural networks

Today, billions of hours of video are collected each year, but most of it is never used, because we don’t have a practical way to extract actionable information from it. A new generation of computer vision solutions, powered by deep neural networks, will soon change this, unleashing the tremendous value that’s currently locked away in our video files.
As a kid in the late 1970s, I remember some of the early consumer video cameras. They were very big, very heavy, and very expensive. In the subsequent 40 years, the electronics industry has done an admirable job of making video capture usable and accessible to the masses. Today, any smartphone can shoot HD video, and a good consumer camcorder costs around $250. „Action cams,“ meant for mounting on a helmet or handlebars, sell for less than $100. You can even buy a drone with good video recording capabilities for a few hundred dollars. So capturing video is now cheap and easy, and, these days we capture lots of video. I’ve accumulated at least 100 hours of recordings of family events. And I keep recording more. But it started to feel pointless when I realized that in all probability, no one would ever watch these recordings. Let’s face it, most of us are not very talented videographers and don’t have the time, skills, or motivation to edit the footage we capture. So, the content piles up. Maybe 1% of it is really worth watching, but which 1%? As a technology enthusiast, I held out hope that someday, technology would arrive that would make my home-video archive accessible. „Show me clips of Cousin Fred laughing at a birthday party,“ I’d command, and the relevant clips would magically appear. But as I’ve learned about computer vision algorithms over the past few years, I’ve realized how difficult a problem this is. Just considering one aspect of the problem – identifying people – the complexity is daunting. A face can be very close to the camera, or at a distance. It can be looking straight at the camera, or off at an angle. People may be wearing sunglasses or hats. They may be in shadows or backlit. And, of course, a really powerful video-indexing system would not only recognize people, it would also understand what activities they’re engaged in, what their emotional states are, and what kind of setting they’re in. With conventional computer vision techniques, this is a really tough problem, the kind that could consume hundreds of man-years of engineering effort and still not yield a robust solution. So, maybe, I thought, I should just stop capturing video. More recently, though, researchers have shown that deep neural networks are well suited for this type of task. Unlike traditional computer vision algorithms, which are based on intricate procedures formulated by engineers to tease apart one type of image from another, deep neural networks are generalized learning machines, which learn how to distinguish objects (and other things, like emotions) through a training procedure that exposes them to numerous examples. This extensive training helps make neural networks robust in the face of variations in inputs. It will likely be a few years, at least, before video indexing solutions based on deep learning are reliable enough to be attractive for typical applications. But it seems inevitable that they will arrive. And when they do, they’re going to unlock huge value. Because it’s not only the billions of hours of home videos that will get indexed, but also, for example, the video from the security camera in front of my home – which might help my neighbor find his lost dog. And the video from the camera in my neighborhood coffee shop, which will help the owner optimize her staffing schedule based on customer traffic. If you’re interested in learning about deep neural networks and other computer vision topics, I invite you to join me at the Embedded Vision Summit on May 2-4 in Santa Clara, California. This event, an educational forum for product creators interested in incorporating visual intelligence into electronic systems and software, is organized by the Embedded Vision Alliance.

Thematik: Allgemein
Embedded Vision Alliance
www.embedded-vision.com

Das könnte Sie auch Interessieren

Anzeige

Vorfreude auf Control 2022

Vorfreude auf Control 2022

Vom 03. bis 06. Mai 2022 wird die 34. Control – Internationale Fachmesse für Qualitätssicherung – in Stuttgart stattfinden.

EMVA Webinar mit Continental Teves

EMVA Webinar mit Continental Teves

Das nächste EMVA Spotlight Webinar findet am Donnerstag, den 9. Dezember, ab 16:00 Uhr (CET) statt. Nuria Garrido López (Continental Teves AG) wird über ‚Änderungen und Lösungen für die optische End-of-Line-Inspektion in der Automobilindustrie‘ sprechen.

EMVA Young Professional Award 2022

EMVA Young Professional Award 2022

Der EMVA Young Professional Award wird auf der 20. EMVA Business Conference 2022 vergeben, die vom 12. bis 14. Mai in Brüssel, Belgien, stattfindet.

Video: EMVA Vision Pitches – Robot Vision

Video: EMVA Vision Pitches – Robot Vision

Teil der inVISION Days 2021 Konferenz waren die EMVA Vision Pitches, bei der sich interessante Unternehmen aus der Bildverarbeitung mit einem kurzen zehn-Minuten-Pitch vorgestellt haben.

Neues Beiratsmitglied für TriEye

Neues Beiratsmitglied für TriEye

Das israelische Startup-Unternehmen TriEye hat Hans Rijns (Bild), eine Führungskraft aus der Halbleiterbranche mit über 25 Jahren internationaler Erfahrung in den Bereichen F&E-Management, Innovation und Geschäftsstrategie, in seinen Beirat aufgenommen.

Vision-Branche auf starkem Kurs

Vision-Branche auf starkem Kurs

Mehr als 1,5 Jahre nach dem Ausbruch der Corona-Pandemie befindet sich der Industrial Technology Index nach einer Stabilisierung auf einem anhaltend hohen Niveau.

Lattice übernimmt Miramterix

Lattice übernimmt Miramterix

Lattice Semiconductor hat Mirametrix, Inc. übernommen, ein Softwareunternehmen, das sich auf fortschrittliche KI-Lösungen für Computer-Vision-Anwendungen spezialisiert hat.

Bild: Alteia
Bild: Alteia
15 Millionen Euro Finanzierung für Alteia

15 Millionen Euro Finanzierung für Alteia

Die Europäische Investitionsbank (EIB) und das in Toulouse ansässige Startup Alteia, das sich auf die Entwicklung von Software für künstliche Intelligenz spezialisiert hat, haben die Unterzeichnung einer Finanzierungsvereinbarung über 15Mio.€ bekannt gegeben.

Micro-Epsilon erweitert Vertriebsteam

Micro-Epsilon erweitert Vertriebsteam

Micro-Epsilon hat sein Vertriebsteam verstärkt. Seit Oktober unterstützen Marcus Gluth (Bild) in den Bereichen Weg- und Abstandssensoren, berührungslose IR-Temperatursensoren sowie Farbsensoren und Jens Höppner im Bereich 3D-Sensoren und Laser-Scanner den Außendienst des Unternehmens.

Anzeige

Anzeige

Anzeige

Anzeige

Anzeige

Anzeige