Bessere Zeichenerkennung dank Deep Learning

Bessere Zeichenerkennung dank Deep Learning

OCR spielt eine wichtige Rolle bei der Identifikation von Objekten in industriellen Produktions- und Logistikprozessen. In der neuen Halcon-Version steht nun mit Deep OCR ein neues Feature zur Verfügung, das die Zeichenerkennung mit Hilfe von Deep Learning optimiert. Durch die automatische Gruppierung von Zeichen können auch ganze Wörter identifiziert werden.

Mit Deep OCR ist in Halcon erstmalig ein ganzheitlich Deep-Learning-basierter OCR-Ansatz verfügbar, mit dem Texte unabhängig von Orientierung, Schrifttyp und Polarität im Bild gefunden werden können. (Bild: MVTec Software GmbH)


Die optische Zeichenerkennung (OCR: Optical Character Recognition) ist nicht nur in der Bürokommunikation, wie etwa bei der textlichen Erfassung gescannter Dokumente, von Bedeutung. Auch im industriellen Umfeld spielt die Technologie eine wichtige Rolle. Beispielsweise lassen sich aufgedruckte Seriennummern erfassen und automatisch auslesen, um Produkte im Warenfluss sicher zu identifizieren und nachzuverfolgen. Dabei muss die OCR-Software auch unter rauen Industriebedingungen Zahlen- oder Buchstaben-Codes präzise lesen, um die Objekte eindeutig zuordnen zu können. So müssen auch schwer leserliche, verzerrte, verschwommene, unscharfe oder schräg gestellte Zeichen zuverlässig erkannt werden, auch auf stark reflektierenden Hintergründen. Mit modernen Machine-Vision-Technologien lassen sich diese hohen Anforderungen sehr gut abdecken. Dank integrierter Funktionen auf Basis von künstlicher Intelligenz (KI) werden hiermit passable Erkennungsraten erreicht. Dabei bietet sich insbesondere Deep Learning an, um anspruchsvolle OCR-Aufgaben anzugehen. Durch ein umfassendes Training anhand großer Mengen von Bilddaten lernen die Software-Algorithmen eigenständig, eine große Bandbreite an Schriftzeichen unter verschiedensten Bedingungen sicher zu erkennen. OCR-Klassifikatoren sorgen dafür, dass sich zahlreiche, vortrainierte Schriftarten wie Dot-Print-, SEMI-, industrielle und dokumentenbasierte Fonts präzise lesen lassen. Allerdings haben herkömmliche, regelbasierte OCR-Technologien einige Schwächen. So gibt es zahlreiche Parameter, mit denen vor allem die Segmentierung einzelner Buchstaben der jeweiligen Applikation angepasst werden muss. Im Nachgang müssen die dann gefundenen und einzeln gelesenen Buchstaben bestimmten Wörtern zugeordnet werden. Kein einfaches Unterfangen, wenn der Kontext des zu lesenden Textes nicht bekannt ist. So liefern konventionelle Lösungen noch nicht die Erkennungsergebnisse, die mit KI möglich wären.

Seiten: 1 2Auf einer Seite lesen

MVTec Software GmbH
www.mvtec.com

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Anzeige

Anzeige

Anzeige

Anzeige